Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74.332
Filter
1.
Water Res ; 256: 121638, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38691899

ABSTRACT

In this study, we investigated the recovery of nitrogen (N) and phosphorus (P) from fresh source-separated urine with a novel electrochemical cell equipped with a magnesium (Mg) anode and carbon-based gas-diffusion cathode. Recovery of P, which exists primarily as phosphate (PO43-) in urine, was achieved through pH-driven precipitation. Maximizing N recovery requires simultaneous approaches to address urea and ammonia (NH3). NH3 recovery was possible through precipitation in struvite with soluble Mg supplied by the anode. Urea was stabilized with electrochemically synthesized hydrogen peroxide (H2O2) from the cathode. H2O2 concentrations and resulting urine pH were directly proportional to the applied current density. Concomitant NH3 and PO43- precipitation as struvite and urea stabilization via H2O2 electrosynthesis was possible at lower current densities, resulting in urine pH under 9.2. Higher current densities resulted in urine pH over 9.2, yielding higher H2O2 concentrations and more consistent stabilization of urea at the expense of NH3 recovery as struvite; PO43- precipitation still occurred but in the form of calcium phosphate and magnesium phosphate solids.


Subject(s)
Electrodes , Hydrogen Peroxide , Magnesium , Phosphorus , Urea , Urea/chemistry , Phosphorus/chemistry , Magnesium/chemistry , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Urine/chemistry , Phosphates/chemistry , Struvite/chemistry , Ammonia/chemistry , Magnesium Compounds/chemistry , Nitrogen/chemistry , Humans
2.
Mikrochim Acta ; 191(5): 296, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702534

ABSTRACT

A covalent organic framework-based strategy was designed for label-free colorimetric detection of pesticides. Covalent organic framework-based nanoenzyme with excellent oxidase-like catalytic activity was synthesized. Unlike other artificial enzymes, porphyrin-based covalent organic framework (p-COF) as the oxidase mimic showed highly catalytic chromogenic activity and good affinity toward TMB without the presence of H2O2, which can be used as substitute for peroxidase mimics and H2O2 system in the colorimetric reaction. Based on the fact that the pesticide-aptamer complex can inhibit the oxidase activity of p-COF and reduced the absorbance at 650 nm in UV-Vis spectrum, a label-free and facile colorimetric detection of pesticides was designed and fabricated. Under the optimized conditions, the COF-based colorimetric probe for pesticide detection displayed high sensitivity and selectivity. Taking fipronil for example the limit of detection was 2.7 ng/mL and the linear range was 5 -500,000 ng/mL. The strategy was successfully applied to the detection of pesticides with good recovery , which was in accordance with that of HPLC-MS/MS. The COF-based colorimetric detection was free of complicated modification H2O2, which guaranteed the accuracy and reliability of measurements. The COF-based sensing strategy is a potential candidate for the sensitive detection of pesticides of interests.


Subject(s)
Colorimetry , Limit of Detection , Metal-Organic Frameworks , Pesticides , Porphyrins , Colorimetry/methods , Pesticides/analysis , Metal-Organic Frameworks/chemistry , Porphyrins/chemistry , Hydrogen Peroxide/chemistry , Oxidoreductases/chemistry , Aptamers, Nucleotide/chemistry
3.
PLoS One ; 19(5): e0302967, 2024.
Article in English | MEDLINE | ID: mdl-38722908

ABSTRACT

Ricin is a highly toxic protein, capable of inhibiting protein synthesis within cells, and is produced from the beans of the Ricinus communis (castor bean) plant. Numerous recent incidents involving ricin have occurred, many in the form of mailed letters resulting in both building and mail sorting facility contamination. The goal of this study was to assess the decontamination efficacy of several commercial off-the-shelf (COTS) cleaners and decontaminants (solutions of sodium hypochlorite [bleach], quaternary ammonium, sodium percarbonate, peracetic acid, and hydrogen peroxide) against a crude preparation of ricin toxin. The ricin was inoculated onto four common building materials (pine wood, drywall joint tape, countertop laminate, and industrial carpet), and the decontaminants were applied to the test coupons using a handheld sprayer. Decontamination efficacy was quantified using an in-vitro cytotoxicity assay to measure the quantity of bioactive ricin toxin extracted from test coupons as compared to the corresponding positive controls (not sprayed with decontaminant). Results showed that decontamination efficacy varied by decontaminant and substrate material, and that efficacy generally improved as the number of spray applications or contact time increased. The solutions of 0.45% peracetic acid and the 20,000-parts per million (ppm) sodium hypochlorite provided the overall best decontamination efficacy. The 0.45% peracetic acid solution achieved 97.8 to 99.8% reduction with a 30-min contact time.


Subject(s)
Decontamination , Ricin , Decontamination/methods , Sodium Hypochlorite/pharmacology , Sodium Hypochlorite/chemistry , Construction Materials , Peracetic Acid/pharmacology , Peracetic Acid/chemistry , Hydrogen Peroxide/chemistry , Animals , Disinfectants/pharmacology , Disinfectants/chemistry
4.
Cells ; 13(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38727311

ABSTRACT

Glaucoma is a heterogeneous group of optic neuropathies characterized by a progressive degeneration of the retinal ganglion cells (RGCs), leading to irreversible vision loss. Nowadays, the traditional therapeutic approach to glaucoma consists of lowering the intraocular pressure (IOP), which does not address the neurodegenerative features of the disease. Besides animal models of glaucoma, there is a considerable need for in vitro experimental models to propose new therapeutic strategies for this ocular disease. In this study, we elucidated the pathological mechanisms leading to neuroretinal R28 cell death after exposure to glutamate and hydrogen peroxide (H2O2) in order to develop new therapeutic approaches for oxidative stress-induced retinal diseases, including glaucoma. We were able to show that glutamate and H2O2 can induce a decrease in R28 cell viability in a concentration-dependent manner. A cell viability of about 42% was found after exposure to 3 mM of glutamate and about 56% after exposure to 100 µM of H2O2 (n = 4). Label-free quantitative mass spectrometry analysis revealed differential alterations of 193 and 311 proteins in R28 cells exposed to 3 mM of glutamate and 100 µM of H2O2, respectively (FDR < 1%; p < 0.05). Bioinformatics analysis indicated that the protein changes were associated with the dysregulation of signaling pathways, which was similar to those observed in glaucoma. Thus, the proteomic alteration induced by glutamate was associated with the inhibition of the PI3K/AKT signaling pathway. On the other hand, H2O2-induced toxicity in R28 cells was linked to the activation of apoptosis signaling and the inhibition of the mTOR and ERK/MAPK signaling pathways. Furthermore, the data show a similarity in the inhibition of the EIF2 and AMPK signaling pathways and the activation of the sumoylation and WNT/ß-catenin signaling pathways in both groups. Our findings suggest that the exposure of R28 cells to glutamate and H2O2 could induce glaucoma-like neurodegenerative features and potentially provide a suitable tool for the development of new therapeutic strategies for retinal diseases.


Subject(s)
Glaucoma , Glutamic Acid , Hydrogen Peroxide , Oxidative Stress , Glaucoma/metabolism , Glaucoma/pathology , Glaucoma/drug therapy , Oxidative Stress/drug effects , Animals , Hydrogen Peroxide/pharmacology , Glutamic Acid/metabolism , Cell Survival/drug effects , Rats , Cell Line , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Signal Transduction/drug effects , Models, Biological , Humans
5.
PLoS One ; 19(5): e0302701, 2024.
Article in English | MEDLINE | ID: mdl-38728286

ABSTRACT

Although the toxicity of arsenic depends on its chemical forms, few studies have taken into account the ambiguous phenomenon that sodium arsenite (NaAsO2) acts as a potent carcinogen while arsenic trioxide (ATO, As2O3) serves as an effective therapeutic agent in lymphoma, suggesting that NaAsO2 and As2O3 may act via paradoxical ways to either promote or inhibit cancer pathogenesis. Here, we compared the cellular response of the two arsenical compounds, NaAsO2 and As2O3, on the Burkitt lymphoma cell model, the Epstein Barr Virus (EBV)-positive P3HR1 cells. Using flow cytometry and biochemistry analyses, we showed that a NaAsO2 treatment induces P3HR1 cell death, combined with drastic drops in ΔΨm, NAD(P)H and ATP levels. In contrast, As2O3-treated cells resist to cell death, with a moderate reduction of ΔΨm, NAD(P)H and ATP. While both compounds block cells in G2/M and affect their protein carbonylation and lipid peroxidation, As2O3 induces a milder increase in superoxide anions and H2O2 than NaAsO2, associated to a milder inhibition of antioxidant defenses. By electron microscopy, RT-qPCR and image cytometry analyses, we showed that As2O3-treated cells display an overall autophagic response, combined with mitophagy and an unfolded protein response, characteristics that were not observed following a NaAsO2 treatment. As previous works showed that As2O3 reactivates EBV in P3HR1 cells, we treated the EBV- Ramos-1 cells and showed that autophagy was not induced in these EBV- cells upon As2O3 treatment suggesting that the boost of autophagy observed in As2O3-treated P3HR1 cells could be due to the presence of EBV in these cells. Overall, our results suggest that As2O3 is an autophagic inducer which action is enhanced when EBV is present in the cells, in contrast to NaAsO2, which induces cell death. That's why As2O3 is combined with other chemicals, as all-trans retinoic acid, to better target cancer cells in therapeutic treatments.


Subject(s)
Arsenic Trioxide , Arsenicals , Arsenites , Autophagy , Mitochondria , Oxidative Stress , Oxides , Sodium Compounds , Arsenic Trioxide/pharmacology , Arsenites/pharmacology , Arsenites/toxicity , Humans , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Sodium Compounds/pharmacology , Arsenicals/pharmacology , Autophagy/drug effects , Cell Line, Tumor , Oxides/pharmacology , Cell Death/drug effects , Membrane Potential, Mitochondrial/drug effects , Herpesvirus 4, Human/drug effects , Adenosine Triphosphate/metabolism , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/drug effects , Burkitt Lymphoma/virology , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Burkitt Lymphoma/drug therapy
6.
BMC Plant Biol ; 24(1): 390, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730367

ABSTRACT

Granulation of juice sacs is a physiological disorder, which affects pomelo fruit quality. Here, the transcriptome and ubiquitinome of the granulated juice sacs were analyzed in Guanxi pomelo. We found that lignin accumulation in the granulated juice sacs was regulated at transcription and protein modification levels. In transcriptome data, we found that the genes in lignin biosynthesis pathway and antioxidant enzyme system of the granulated juice sacs were significantly upregulated. However, in ubiquitinome data, we found that ubiquitinated antioxidant enzymes increased in abundance but the enzyme activities decreased after the modification, which gave rise to reactive oxygen species (ROS) contents in granulated juice sacs. This finding suggests that ubiquitination level of the antioxidant enzymes is negatively correlated with the enzyme activities. Increased H2O2 is considered to be a signaling molecule to activate the key gene expressions in lignin biosynthesis pathway, which leads to the lignification in granulated juice sacs of pomelo. This regulatory mechanism in juice sac granulation of pomelo was further confirmed through the verification experiment using tissue culture by adding H2O2 or dimethylthiourea (DMTU). Our findings suggest that scavenging H2O2 and other ROS are important for reducing lignin accumulation, alleviating juice sac granulation and improving pomelo fruit quality.


Subject(s)
Citrus , Lignin , Lignin/metabolism , Citrus/metabolism , Citrus/genetics , Fruit and Vegetable Juices/analysis , Reactive Oxygen Species/metabolism , Transcriptome , Hydrogen Peroxide/metabolism , Gene Expression Regulation, Plant , Fruit/metabolism , Fruit/genetics , Antioxidants/metabolism
7.
Am J Dent ; 37(2): 78-84, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38704850

ABSTRACT

PURPOSE: To evaluate how fluoride- or chitosan-based toothpaste used during at-home bleaching affects enamel roughness, tooth color, and staining susceptibility. METHODS: Bovine enamel blocks were submitted to a 14-day cycling regime considering a factorial design (bleaching agent x toothpaste, 2 x 3), with n=10: (1) bleaching with 16% carbamide peroxide (CP) or 6% hydrogen peroxide (HP), and (2) daily exposure of a fluoride (1,450 ppm F-NaF) toothpaste (FT), chitosan-based toothpaste (CBT), or distilled water (control). Then, 24 hours after the last day of bleaching procedure the samples were exposed to a coffee solution. Color (ΔEab, ΔE00, L*, a*, b*) and roughness (Ra, µm) analyses were performed to compare the samples initially (baseline), after bleaching, and after coffee staining. The results were evaluated by linear models for repeated measures (L*, a*, b*, and Ra), 2-way ANOVA (ΔEab, ΔE00) and Tukey's test (α= 0.05). RESULTS: After the at-home bleaching procedure (toothpaste vs. time, P< 0.0001), the toothpaste groups presented a statistically lower Ra than the control (CBT 0.05). After coffee exposure, CBT presented lower ΔEab and ΔE00 values in the HP groups (toothpaste, P< 0.0001), and lower b* and a* values in the CP groups (toothpaste vs. time, P= 0.004). CLINICAL SIGNIFICANCE: Fluoride or chitosan delivered by toothpaste can reduce surface alterations of the enamel during at-home bleaching, without affecting bleaching efficacy.


Subject(s)
Carbamide Peroxide , Chitosan , Dental Enamel , Hydrogen Peroxide , Tooth Bleaching Agents , Tooth Bleaching , Tooth Discoloration , Toothpastes , Chitosan/pharmacology , Toothpastes/pharmacology , Animals , Cattle , Tooth Bleaching/methods , Dental Enamel/drug effects , Tooth Bleaching Agents/pharmacology , Hydrogen Peroxide/pharmacology , Carbamide Peroxide/pharmacology , Surface Properties , Fluorides/pharmacology , Color , Urea/analogs & derivatives , Urea/pharmacology , Coffee , Peroxides/pharmacology
8.
Mol Biol Rep ; 51(1): 633, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724835

ABSTRACT

BACKGROUND: Radiation therapy is utilized for treatment of localized prostate cancer. Nevertheless, cancerous cells frequently develop radiation resistance. While higher radiation doses have not always been effective, radiosensitizers have been extensively studied for their ability to enhance the cytotoxic effects of radiation. So, this study aims to evaluate the possible radiosensitization effects of docetaxel (DTX) and silver nanoparticles (SNP) in LNCaP cells. METHODS: The cytotoxic effects of DTX, SNP and 2 Gy of X-Ray radiation treatments were assessed in human LNCaP cell line using the MTT test after 24 h. Moreover, the effects of DTX, SNP and radiation on Epidermal growth factor (EGF), Caspase 3, inducible nitric oxide synthase and E-cadherin gene expression were analyzed using the Real-time PCR method. The level of Hydrogen peroxide (H2O2), an oxidative stress marker, was also detected 24 h after various single and combined treatments. RESULTS: The combinations of SNP (in low toxic concentration) and/or DTX (0.25× IC50 and 0.5 × IC50 concentrations for triple and double combinations respectively) with radiation induced significant cytotoxicity in LNCaP cells in comparison to monotherapies. These cytotoxic effects were associated with the downregulation of EGF mRNA. Additionally, H2O2 levels increased after Radiation + SNP + DTX triple combination and double combinations including Radiation + SNP and Radiation + DTX versus single treatments. The triple combination treatment also increased Caspase 3 and and E-cadherin mRNA levels in compared to single treatments in LNCaP cells. CONCLUSION: Our results indicate that the combination of SNP and DTX with radiation induces significant anti-cancer effects. Upregulation of Caspase 3 and E-cadherin gene expression, and decreased mRNA expression level of EGF may be exerted specifically by use of this combination versus single treatments.


Subject(s)
Docetaxel , Metal Nanoparticles , Prostatic Neoplasms , Radiation-Sensitizing Agents , Silver , Humans , Docetaxel/pharmacology , Male , Silver/pharmacology , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Cell Line, Tumor , Radiation-Sensitizing Agents/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Hydrogen Peroxide/pharmacology , Cell Survival/drug effects , Cell Survival/radiation effects , Caspase 3/metabolism , Caspase 3/genetics , Antineoplastic Agents/pharmacology , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Apoptosis/drug effects , Apoptosis/radiation effects , Cadherins/metabolism , Cadherins/genetics
9.
Curr Genet ; 70(1): 7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743270

ABSTRACT

Fermented eggplant is a traditional fermented food, however lactic acid bacteria capable of producing exopolysaccharide (EPS) have not yet been exploited. The present study focused on the production and protective effects against oxidative stress of an EPS produced by Lacticaseibacillus paracasei NC4 (NC4-EPS), in addition to deciphering its genomic features and EPS biosynthesis pathway. Among 54 isolates tested, strain NC4 showed the highest EPS yield and antioxidant activity. The maximum EPS production (2.04 ± 0.11 g/L) was achieved by culturing in MRS medium containing 60 g/L sucrose at 37 °C for 48 h. Under 2 mM H2O2 stress, the survival of a yeast model Saccharomyces cerevisiae treated with 0.4 mg/mL NC4-EPS was 2.4-fold better than non-treated cells, which was in agreement with the catalase and superoxide dismutase activities measured from cell lysates. The complete genome of NC4 composed of a circular chromosome of 2,888,896 bp and 3 circular plasmids. The NC4 genome comprises more genes with annotated function in nitrogen metabolism, phosphorus metabolism, cell division and cell cycle, and iron acquisition and metabolism as compared to other reported L. paracasei. Of note, the eps gene cluster is not conserved across L. paracasei. Pathways of sugar metabolism for EPS biosynthesis were proposed for the first time, in which gdp pathway only present in few plant-derived bacteria was identified. These findings shed new light on the cell-protective activity and biosynthesis of EPS produced by L. paracasei, paving the way for future efforts to enhance yield and tailor-made EPS production for food and pharmaceutical industries.


Subject(s)
Fermentation , Lacticaseibacillus paracasei , Oxidative Stress , Polysaccharides, Bacterial , Solanum melongena , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/metabolism , Solanum melongena/microbiology , Solanum melongena/genetics , Solanum melongena/metabolism , Lacticaseibacillus paracasei/metabolism , Lacticaseibacillus paracasei/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Genome, Bacterial , Fermented Foods/microbiology , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics
10.
Proc Natl Acad Sci U S A ; 121(21): e2401738121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743623

ABSTRACT

Studies have determined that nonredox enzymes that are cofactored with Fe(II) are the most oxidant-sensitive targets inside Escherichia coli. These enzymes use Fe(II) cofactors to bind and activate substrates. Because of their solvent exposure, the metal can be accessed and oxidized by reactive oxygen species, thereby inactivating the enzyme. Because these enzymes participate in key physiological processes, the consequences of stress can be severe. Accordingly, when E. coli senses elevated levels of H2O2, it induces both a miniferritin and a manganese importer, enabling the replacement of the iron atom in these enzymes with manganese. Manganese does not react with H2O2 and thereby preserves enzyme activity. In this study, we examined several diverse microbes to identify the metal that they customarily integrate into ribulose-5-phosphate 3-epimerase, a representative of this enzyme family. The anaerobe Bacteroides thetaiotaomicron, like E. coli, uses iron. In contrast, Bacillus subtilis and Lactococcus lactis use manganese, and Saccharomyces cerevisiae uses zinc. The latter organisms are therefore well suited to the oxidizing environments in which they dwell. Similar results were obtained with peptide deformylase, another essential enzyme of the mononuclear class. Strikingly, heterologous expression experiments show that it is the metal pool within the organism, rather than features of the protein itself, that determine which metal is incorporated. Further, regardless of the source organism, each enzyme exhibits highest turnover with iron and lowest turnover with zinc. We infer that the intrinsic catalytic properties of the metal cannot easily be retuned by evolution of the polypeptide.


Subject(s)
Escherichia coli , Iron , Manganese , Manganese/metabolism , Iron/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Hydrogen Peroxide/metabolism , Saccharomyces cerevisiae/metabolism , Bacillus subtilis/enzymology , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Zinc/metabolism , Lactococcus lactis/enzymology , Lactococcus lactis/metabolism , Oxidation-Reduction , Metals/metabolism
11.
PLoS One ; 19(5): e0303136, 2024.
Article in English | MEDLINE | ID: mdl-38743689

ABSTRACT

Superoxide dismutase (SOD) is an antioxidant enzyme that protects the body from free radicals. It has both antioxidant and immunomodulatory properties, inducing macrophage polarization from M1 to M2. Macrophages, key mediators of the innate immune response, are divided into the M1 (pro-inflammatory) and M2 (anti-inflammatory) subtypes. In this study, we aimed to assess the antioxidant and neuroprotective effects of SOD on nerve cells and its immunomodulatory effects on macrophages. We observed that SOD inhibited the accumulation of reactive oxygen species and enhanced the viability of H2O2-treated nerve cells. Furthermore, SOD reduced the degree of necrosis in nerve cells treated with the conditioned medium from macrophages, which induced inflammation. In addition, SOD promoted the M1 to M2 transition of macrophages. Our findings suggest that SOD protects nerve cells and regulates immune responses.


Subject(s)
Macrophages , Neuroprotective Agents , Reactive Oxygen Species , Superoxide Dismutase , Animals , Superoxide Dismutase/metabolism , Mice , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Humans , Neuroprotective Agents/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Neuroblastoma/immunology , Neuroblastoma/pathology , Cell Line, Tumor , Hydrogen Peroxide/pharmacology , Cell Survival/drug effects , Antioxidants/pharmacology
12.
Nat Commun ; 15(1): 4025, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740804

ABSTRACT

Intracellular membranes composing organelles of eukaryotes include membrane proteins playing crucial roles in physiological functions. However, a comprehensive understanding of the cellular responses triggered by intracellular membrane-focused oxidative stress remains elusive. Herein, we report an amphiphilic photocatalyst localised in intracellular membranes to damage membrane proteins oxidatively, resulting in non-canonical pyroptosis. Our developed photocatalysis generates hydroxyl radicals and hydrogen peroxides via water oxidation, which is accelerated under hypoxia. Single-molecule magnetic tweezers reveal that photocatalysis-induced oxidation markedly destabilised membrane protein folding. In cell environment, label-free quantification reveals that oxidative damage occurs primarily in membrane proteins related to protein quality control, thereby aggravating mitochondrial and endoplasmic reticulum stress and inducing lytic cell death. Notably, the photocatalysis activates non-canonical inflammasome caspases, resulting in gasdermin D cleavage to its pore-forming fragment and subsequent pyroptosis. These findings suggest that the oxidation of intracellular membrane proteins triggers non-canonical pyroptosis.


Subject(s)
Inflammasomes , Membrane Proteins , Oxidation-Reduction , Pyroptosis , Humans , Inflammasomes/metabolism , Membrane Proteins/metabolism , Oxidative Stress , Catalysis , Endoplasmic Reticulum Stress , Hydrogen Peroxide/metabolism , Phosphate-Binding Proteins/metabolism , Hydroxyl Radical/metabolism , Mitochondria/metabolism , Intracellular Membranes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Animals , Photochemical Processes , Protein Folding , Caspases/metabolism , Gasdermins
13.
Anal Chim Acta ; 1307: 342627, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719406

ABSTRACT

BACKGROUND: Hydrogen peroxide (H2O2) is an important reactive oxygen species (ROS) molecule involved in cell metabolism regulation, transcriptional regulation, and cytoskeleton remodeling. Real-time monitoring of H2O2 levels in live cells is of great significance for disease prevention and diagnosis. RESULTS: We utilized carbon cloth (CC) as the substrate material and employed a single-atom catalysis strategy to prepare a flexible self-supported sensing platform for the real-time detection of H2O2 secreted by live cells. By adjusting the coordination structure of single-atom sites through P and S doping, a cobalt single-atom nanoenzyme Co-NC/PS with excellent peroxidase-like activity was obtained. Furthermore, we explored the enzyme kinetics and possible catalytic mechanism of Co-NC/PS. Due to the excellent flexibility, high conductivity, strong adsorption performance of carbon cloth, and the introduction of non-metallic atom-doped active sites, the developed Co-NC/PS@CC exhibited ideal sensing performance. Experimental results showed that the linear response range for H2O2 was 1-17328 µM, with a detection limit (LOD) of 0.1687 µM. Additionally, the sensor demonstrated good reproducibility, repeatability, anti-interference, and stability. SIGNIFICANCE: The Co-NC/PS@CC prepared in this study has been successfully applied for detecting H2O2 secreted by MCF-7 live cells, expanding the application of single-atom nanoenzymes in live cell biosensing, with significant implications for health monitoring and clinical diagnostics.


Subject(s)
Cobalt , Electrochemical Techniques , Hydrogen Peroxide , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Cobalt/chemistry , Humans , Electrochemical Techniques/methods , MCF-7 Cells , Carbon/chemistry , Limit of Detection , Biosensing Techniques/methods
14.
Biotechnol J ; 19(5): e2300664, 2024 May.
Article in English | MEDLINE | ID: mdl-38719620

ABSTRACT

CYP116B5 is a class VII P450 in which the heme domain is linked to a FMN and 2Fe2S-binding reductase. Our laboratory has proved that the CYP116B5 heme domain (CYP116B5-hd) is capable of catalyzing the oxidation of substrates using H2O2. Recently, the Molecular Lego approach was applied to join the heme domain of CYP116B5 to sarcosine oxidase (SOX), which provides H2O2 in-situ by the sarcosine oxidation. In this work, the chimeric self-sufficient fusion enzyme CYP116B5-SOX was heterologously expressed, purified, and characterized for its functionality by absorbance and fluorescence spectroscopy. Differential scanning calorimetry (DSC) experiments revealed a TM of 48.4 ± 0.04 and 58.3 ± 0.02°C and a enthalpy value of 175,500 ± 1850 and 120,500 ± 1350 cal mol-1 for the CYP116B5 and SOX domains respectively. The fusion enzyme showed an outstanding chemical stability in presence of up to 200 mM sarcosine or 5 mM H2O2 (4.4 ± 0.8 and 11.0 ± 2.6% heme leakage respectively). Thanks to the in-situ H2O2 generation, an improved kcat/KM for the p-nitrophenol conversion was observed (kcat of 20.1 ± 0.6 min-1 and KM of 0.23 ± 0.03 mM), corresponding to 4 times the kcat/KM of the CYP116B5-hd. The aim of this work is the development of an engineered biocatalyst to be exploited in bioremediation. In order to tackle this challenge, an E. coli strain expressing CYP116B5-SOX was employed to exploit this biocatalyst for the oxidation of the wastewater contaminating-drug tamoxifen. Data show a 12-fold increase in tamoxifen N-oxide production-herein detected for the first time as CYP116B5 metabolite-compared to the direct H2O2 supply, equal to the 25% of the total drug conversion.


Subject(s)
Biodegradation, Environmental , Cytochrome P-450 Enzyme System , Escherichia coli , Hydrogen Peroxide , Sarcosine Oxidase , Hydrogen Peroxide/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Sarcosine Oxidase/metabolism , Sarcosine Oxidase/genetics , Sarcosine Oxidase/chemistry , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/chemistry , Oxidation-Reduction , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Sarcosine/metabolism , Sarcosine/analogs & derivatives
15.
Physiol Plant ; 176(3): e14324, 2024.
Article in English | MEDLINE | ID: mdl-38705866

ABSTRACT

Broomrape (Orobanche cumana) negatively affects sunflower, causing severe yield losses, and thus, there is a need to control O. cumana infestation. Brassinosteroids (BRs) play key roles in plant growth and provide resilience to weed infection. This study aims to evaluate the mechanisms by which BRs ameliorate O. cumana infection in sunflower (Helianthus annuus). Seeds were pretreated with BRs (1, 10, and 100 nM) and O. cumana inoculation for 4 weeks under soil conditions. O. cumana infection significantly reduced plant growth traits, photosynthesis, endogenous BRs and regulated the plant defence (POX, GST), BRs signalling (BAK1, BSK1 to BSK4) and synthesis (BRI1, BR6OX2) genes. O. cumana also elevated the levels of malondialdehyde (MDA), hydroxyl radical (OH-), hydrogen peroxide (H2O2) and superoxide (O2 •-) in leaves/roots by 77/112, 63/103, 56/97 and 54/89%, as well as caused ultrastructural cellular damages in both leaves and roots. In response, plants activated a few enzymes, superoxide dismutase (SOD), peroxidase (POD) and reduced glutathione but were unable to stimulate the activity of ascorbate peroxidase (APX) and catalase (CAT) enzymes. The addition of BRs (especially at 10 nM) notably recovered the ultrastructural cellular damages, lowered the production of oxidative stress, activated the key enzymatic antioxidants and induced the phenolic and lignin contents. The downregulation in the particular genes by BRs is attributed to the increased resilience of sunflower via a susceptible reaction. In a nutshell, BRs notably enhanced the sunflower resistance to O. cumana infection by escalating the plant immunity responses, inducing systemic acquired resistance, reducing oxidative or cellular damages, and modulating the expression of BR synthesis or signalling genes.


Subject(s)
Brassinosteroids , Helianthus , Orobanche , Seeds , Helianthus/drug effects , Helianthus/immunology , Helianthus/physiology , Brassinosteroids/pharmacology , Brassinosteroids/metabolism , Orobanche/physiology , Orobanche/drug effects , Seeds/drug effects , Seeds/immunology , Plant Weeds/drug effects , Plant Weeds/physiology , Plant Diseases/parasitology , Plant Diseases/immunology , Plant Immunity/drug effects , Gene Expression Regulation, Plant/drug effects , Photosynthesis/drug effects , Plant Roots/immunology , Plant Roots/drug effects , Hydrogen Peroxide/metabolism , Plant Leaves/drug effects , Plant Leaves/immunology , Plant Proteins/metabolism , Plant Proteins/genetics , Malondialdehyde/metabolism
16.
Planta ; 259(6): 142, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702456

ABSTRACT

MAIN CONCLUSION: PLDα1 promoted H2S production by positively regulating the expression of LCD. Stomatal closure promoted by PLDα1 required the accumulation of H2S under drought stress. Phospholipase Dα1 (PLDα1) acting as one of the signal enzymes can respond to drought stress. It is well known that hydrogen sulfide (H2S) plays an important role in plant responding to biotic or abiotic stress. In this study, the functions and relationship between PLDα1 and H2S in drought stress resistance in Arabidopsis were explored. Our results indicated that drought stress promotes PLDα1 and H2S production by inducing the expression of PLDα1 and LCD genes. PLDα1 and LCD enhanced plant tolerance to drought by regulating membrane lipid peroxidation, proline accumulation, H2O2 content and stomatal closure. Under drought stress, the H2O2 content of PLDα1-deficient mutant (pldα1), L-cysteine desulfhydrase (LCD)-deficient mutant (lcd) was higher than that of ecotype (WT), the stomatal aperture of pldα1 and lcd was larger than that of WT. The transcriptional and translational levels of LCD were lower in pldα1 than that in WT. Exogenous application of the H2S donor NaHS or GYY reduced the stomatal aperture of WT, pldα1, PLDα1-CO, and PLDα1-OE lines, while exogenous application of the H2S scavenger hypotaurine (HT) increased the stomatal aperture. qRT-PCR analysis of stomatal movement-related genes showed that the expression of CAX1, ABCG5, SCAB1, and SLAC1 genes in pldα1 and lcd were down-regulated, while ACA1 and OST1 gene expression was significantly up-regulated. Thus, PLDα1 and LCD are required for stomatal closure to improve drought stress tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Droughts , Gene Expression Regulation, Plant , Hydrogen Sulfide , Phospholipase D , Plant Stomata , Arabidopsis/genetics , Arabidopsis/physiology , Plant Stomata/physiology , Plant Stomata/genetics , Phospholipase D/metabolism , Phospholipase D/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Peroxide/metabolism , Stress, Physiological/genetics , Proline/metabolism , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Lipid Peroxidation
17.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696020

ABSTRACT

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Subject(s)
Chlorophyll , Cucumis sativus , Gene Expression Regulation, Plant , Photosynthesis , Salt Stress , Salt Tolerance , Seedlings , Cucumis sativus/genetics , Cucumis sativus/growth & development , Cucumis sativus/physiology , Cucumis sativus/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/drug effects , Seedlings/physiology , Gene Expression Regulation, Plant/drug effects , Salt Tolerance/genetics , Salt Stress/genetics , Chlorophyll/metabolism , Photosynthesis/genetics , Photosynthesis/drug effects , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Antioxidants/metabolism , Malondialdehyde/metabolism , Plants, Genetically Modified , Gene Silencing
18.
Clin Oral Investig ; 28(5): 295, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700548

ABSTRACT

OBJECTIVE: This randomized controlled trial aimed to evaluate the equivalence in the color change, adverse effects, self-perception (AS) and the impact on oral condition (IO) of participants submitted to different application protocols of in-office dental bleaching. MATERIALS AND METHODS: 165 participants were bleached with a 35% hydrogen peroxide gel (Total Blanc Office One-Step, DFL), according to the following protocols: (1) 2 applications of 20-min each (2 × 20 min); (2) 1 × 40-min and; (3) 1 × 30-min. The color change was evaluated with the Vita Easyshade spectrophotometer, Vita Classical and Vita Bleachedguide scales. The intensity and risk of tooth sensitivity (TS) and gingival irritation (GI) were recorded using a 0-10 visual analogue scale (VAS). AS and IO was assessed before and after the bleaching procedure using the Orofacial Aesthetic Scale and Oral Health Impact Profile-14, respectively. RESULTS: Equivalent color change were observed (p < 0.001), with no significant difference between groups. The group 2 × 20 min presented the highest risk of TS (76%, 95% CI 63 to 85), compared to the 1 × 30 min (p < 0.04). The intensity of TS and GI and the risk of GI was similar between groups (p > 0.31). Irrespectively of the group (p = 0.32), significant improvements were observed for all items of AS and IO after bleaching (p < 0.02). CONCLUSIONS: The 1 × 30 min protocol produced equivalent color change to the other bleaching protocols with reduced risk of TS and shorter application time. CLINICAL RELEVANCE: A more simplified application regimen of a single application of 30 min yields effective bleaching and patient satisfaction while minimizing undesirable side effects and improving patient satisfaction.


Subject(s)
Dentin Sensitivity , Hydrogen Peroxide , Tooth Bleaching Agents , Tooth Bleaching , Humans , Tooth Bleaching/methods , Female , Hydrogen Peroxide/administration & dosage , Male , Adult , Single-Blind Method , Dentin Sensitivity/chemically induced , Dentin Sensitivity/prevention & control , Spectrophotometry , Treatment Outcome , Middle Aged , Esthetics, Dental , Adolescent
19.
Plant Cell Rep ; 43(6): 139, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735908

ABSTRACT

KEY MESSAGE: Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.


Subject(s)
Cadmium , Catharanthus , Gene Expression Regulation, Plant , Melatonin , Nitric Oxide , Oxidative Stress , Plant Leaves , Vinblastine , Catharanthus/metabolism , Catharanthus/genetics , Catharanthus/drug effects , Nitric Oxide/metabolism , Cadmium/metabolism , Cadmium/toxicity , Oxidative Stress/drug effects , Vinblastine/metabolism , Melatonin/metabolism , Melatonin/pharmacology , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Antioxidants/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
20.
Anal Chem ; 96(19): 7763-7771, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38699865

ABSTRACT

Given its pivotal role in modulating various pathological processes, precise measurement of nitric oxide (●NO) levels in physiological solutions is imperative. The key techniques include the ozone-based chemiluminescence (CL) reactions, amperometric ●NO sensing, and Griess assay, each with its advantages and drawbacks. In this study, a hemin/H2O2/luminol CL reaction was employed for accurately detecting ●NO in diverse solutions. We investigated how the luminescence kinetics was influenced by ●NO from two donors, nitrite and peroxynitrite, while also assessing the impact of culture medium components and reactive species quenchers. Furthermore, we experimentally and theoretically explored the mechanism of hemin oxidation responsible for the initiation of light generation. Although both hemin and ●NO enhanced the H2O2/luminol-based luminescence reactions with distinct kinetics, hemin's interference with ●NO/peroxynitrite- modulated their individual effects. Leveraging the propagated signal due to hemin, the ●NO levels in solution were estimated, observing parallel changes to those detected via amperometric detection in response to varying concentrations of the ●NO-donor. The examined reactions aid in comprehending the mechanism of ●NO/hemin/H2O2/luminol interactions and how these can be used for detecting ●NO in solution with minimal sample size demands. Moreover, the selectivity across different solutions can be improved by incorporating certain quenchers for reactive species into the reaction.


Subject(s)
Hemin , Hydrogen Peroxide , Nitric Oxide , Hemin/chemistry , Nitric Oxide/analysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Molecular Probes/chemistry , Luminol/chemistry , Solutions , Luminescent Measurements , Peroxynitrous Acid/analysis , Peroxynitrous Acid/chemistry , Kinetics , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...